
 June 23 2005
 

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Overview

This paper discusses a new paradigm of email messaging
(“RSS/Email”) and contrasts it with the current paradigm
(“Legacy Email”). In Legacy Email, senders push messages
out to receivers, where they are aggregated by receiver MTAs
and pulled by MUA software. In RSS/Email, senders are
responsible for storing messages, and merely notify receiver
aggregators that new mail is available; receiver MUAs then
poll trusted senders for messages. Today (2005) we rely on
email to perform many functions. This paper argues that by
200 many, if not all, of those functions will be subsumed by a
combination of Instant Messaging and RSS/Email.

Technology Implications. Next generation mail software will
integrate RSS capability. Much messaging traffic will migrate
to RSS/Email.

Business Implications. To be discussed.

 June 23 2005
 2

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Contents

Message Lifecycle in Brief · 3
Benefits · 4
Disadvantages · 6
Message Lifecycle in Detail · 7
How Composition Works · 8
How Submission Works · 9
How Transmission Works: Thundermouse · 0
How Notification Works: Thunderclap · 
How Receiving Works: Thundercat · 3
How Reading Works: Thunderbird · 5
What About Spam? · 6
How Archiving Works · 7
How First Contact Works · 8
Essential Differences · 9
What does the Zombie Scenario look like? · 20
Implications: ISPs · 2
Implications: Enterprises · 22
Implications: Traditional End-Users · 23
Implications: Mobile Users · 24
Implications: Discussion Mailing List Providers · 25
Implications: Announcement Mailing List Providers · 26
Implications: Marketing Service Providers · 27
Implications: Blogs · 28

Efficiency Considerations · 29
Messaging Theory · 30
Push and Pull Models · 3
Time Sensitivity · 32
Audience Sizes · 33
Privacy Levels · 34
Threat Models · 35
Evolved Mechanisms · 36
Miscellaneous Considerations · 37
Practices: Today and Tomorrow · 38
How Entrenched is the Legacy Model? · 39
Managing User Expectations · 40
Transition Strategy · 4
Backward and Forward Compatibility · 42
Major Components · 43
Thunderbird Integrated MUA · 44
Thundercat Receiver and MDA · 45
Thundermouse Publisher and MSA · 46
Thunderclap Notification Protocol · 47
Integration Challenges · 48
FAQs · 49
Security Model · 50
Forwarding · 5
Acknowledgements ·

 June 23 2005
 3

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Message Lifecycle in Brief

Alice sends a mesage to Bob.
Alice composes the message in her client. She clicks “send”.
Her client submits the message to a Message Submission

Agent (MSA). This upload could occur over traditional smtp
on port 25, over smtp on port 587, or using an http post
using RSS conventions.

The MSA stores the message in the user’s permanently-
connected Outbox. The MSA observes that Bob is a receiver
of that message. It establishes an directed RSS feed for Bob
and only Bob to read that message.

The MSA sends a udp notification to Bob’s permanently-
connected receiver isp. That isp records the notification in a
database: “Alice has sent mail to Bob, and the feed url is such-
and-such.”

Bob’s messaging client (MUA) queries his isp, and obtains
the list of new mail as an RSS feed. Bob’s MUA then polls each
sender in the list, and pulls down the new messages. Alice is
one of those senders, so Bob’s MUA pulls down her message
too.

Bob’s MUA sorts the messages by arrival time or whatever.
To Bob, the message inbox is indistinguishable from a
traditional email inbox.

Bob’s eyeballs read the message from Alice.

������ ��������

������
���

��������
��� ���

�����������
����������

�

�
������ ��������

������
���

��������
��� ���

���������

������������

 June 23 2005
 4

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Benefits

What does RSS/Email do that Legacy Email doesn’t?

Return Receipt. As a sender, you know exactly when the
receiver’s MUA pulled a message you sent. If the message was
never pulled, you definitely know that the message didn’t hit
the eyeballs.

Retraction. If you go “oops, I shouldn’t have sent that” you
have a fighting chance to pull the message before the receiver
gets it.

Dynamic Content. It’s a lot easier to program dynamically
generated content into an RSS feed than into an email
message.

The Burden Shifts to Senders. A common refrain in the
antispam community is “if only we could shift the cost of
spam to the people who send it.” In fact, the entire history of
the antispam movement can be read as a succession of efforts
to do exactly that, from postage stamps to hashcash to sender
authentication to challenge response. The RSS/Email model
requires senders to store messages, so the costs do naturally
shift to the senders.

The Burden Shifts to the End-User. In fact, receiver ISPs don’t
have to store entire messages anymore; instead, they just keep
a database of new mail, basically just a dirty list; the heavy
lifting moves to the end-user MUA client, where CPU and
bandwidth are cheaper. So RSS/Email conforms to the “dumb
network, smart edge” model.

Bandwidth Replaces Disk. In Legacy Email, in the ideal case,
a single message to 00 recipients at the same ISP goes across
the network once, but repeats itself 00 times on disk. In
RSS/Email, one message to 00 recipients at the same ISP
goes across the network 00 times, but doesn’t appear on

 June 23 2005
 5

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

disk at all. In an era where bandwidth is cheaper than disk,
this makes sense. (It would be really cool to have curves
showing bandwidth vs disk over time, and maybe some kind
of crossover. Consider the cost of transferring  gigabyte per
hour, vs the cost of storing  gigabyte per hour. Kinetic vs
static cost of data.

Of course a really smart mailserver implementation would
store a message once and DB it a hundred times, but that shifts
the big-O complexity to the programmer domain.

(True, we’re still storing the message a hundred times on
end-user disk, but that’s a sunk cost anyway, invariant between
Legacy Email and RSS/Email.)

No More “Over Quota” Bounces. The quota problem is an
aftefact of receiver-side storage and the cost of ISP disk (static
data). In a world where bandwidth (kinetic data) and end-
user disk are cheap, it makes more sense to skip the ISP disk
step entirely. And suddenly end-users are limited only by
how much disk they have on their local cache devices, which
nowadays is a lot.

 June 23 2005
 6

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Disadvantages

UDP notifications are unreliable. Messages may be delayed as
a result.

 June 23 2005
 7

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Message Lifecycle in Detail

This chapter walks through every phase of a messaging
transaction from fingers on keyboard to eyeballs on screen.

Terminology Note. When I say RSS, I mean it very loosely:
Blogging with RSS is a pull paradigm which is getting more
and more widely known, and it’s the pull aspect of RSS that
I’m interested in; whether the actual file format is XML or
MIME is of less importance. More interesting is the fact that
today Thunderbird supports both email and RSS in a single
application.

 June 23 2005
 8

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Composition Works

Alice opens a message composition box. This is ye olde
textbox. It may appear inside a web browser, in the form of a
webmail interface. It may appear inside an MUA, a traditional
legacy email client. It may appear inside an IM chat window.
It may appear inside a smart addressbook that supports
integrated messaging.

I wouldn’t be surprised if some enterprising OS vendor
devised a smart messaging textbox widget that applications
could simply embed. And then every application would
suddenly become messaging-enabled, at least for publication.

Alice types her message into the textbox. The message
could be a short “haha LOL” or a URL or a full-blown
multiparagraph rant in HTML, complete with embedded
images, video, and sound files.

 June 23 2005
 9

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Submission Works

Alice has typed her message; she clicks “Send”.
The textbox closes. As far as Alice is concerned, the

message has gone into the ether and it’s now The Internet’s
job to make sure it gets to the receiver. The first step in this
process is always the same: the underlying application submits
the message to Alice’s ISP. (Or enterprise, or personal Linux
server, or whatever. The important thing is that the MSA
which gets the message is directly and permanently connected
to the Internet.)

This submission could occur over plain old smtp over port
25. Or it could occur over authenticated smtp over port 587.
These things happen if Alice is using a Legacy Email client that
has no knowledge of RSS/Email. RSS/Email can be entirely
backward-compatible with Legacy Email, at both the user-
experience level and the technology-protocol level.

Or maybe the submission occurs over http on port 80, or
https on port 443. This could happen if Alice is using an RSS
composition client like MarsEdit, so instead of clicking “Send”
she’s clicking “Post” or “Publish”. Blog composition clients
tend to use a Web Services protocol such as XML-RPC or
SOAP to submit messages from the end-user client to the blog
server. Those protocols use http post when they can. (Some
blog clients also know how to use other protocols, like ftp, but
let’s not go there.) Atom is another protocol in this space too.

But maybe Alice is typing into an RSS/Email aware client.
In this next-generation scenario maybe there are two buttons:
“Send Fast” and “Send Slow”. What’s the difference? “Send
Fast” is what we associate with Instant Messaging. “Send
Slow” is what we associate with Legacy Email. It tells the
system whether Alice is impatient for a response.

In any case, let’s pretend the server that receives the
submission groks RSS/Email. So it knows how to talk smtp
and it knows how to talk XML-RPC and SOAP too. It can
handle submissions from Legacy Email clients and it can
handle submissions from RSS/Email clients. It is super
awesome. We call this MSA-on-steroids “Thundermouse”.

 June 23 2005
 0

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Transmission Works: Thundermouse

Thundermouse accepts the message from the submitting
client. It stores the message on disk in the user’s online
outbox. Once the message is in the outbox, it becomes
accessible over http by the recipient of the message. So if
the recipient is expecting the message, and is impatiently
pounding on the “Refresh” button, then once the message gets
saved, it shows up in the receiver’s client. So far this looks
exactly like RSS blogging.

But we don’t want to encourage people to pound on
“Refresh” – we have quite enough déclassé behaviour in the
real world and we don’t need more of it online. That’s why,
after saving the message to disk, Thundermouse also sends out
a UDP notification to the receiver. The receiver, if it is RSS/
Email aware, accepts the notification and sends back a UDP
confirmation to the sender. This polite little exchange, very
lightweight, is enough to tell receivers “You’ve Got Mail!”

If Thundermouse gets back a confirmation, then its job is
done. (To be precise, it needs to get back N confirmations for
N recipients.)

But if it doesn’t get back a confirmation, then maybe the
recipient isn’t RSS/Email aware, and so we have to fall back
to backward compatibility: SMTP. Thundermouse dutifully
queues the message for outbound SMTP and relies on the old
messaging hindbrain to do its thing. Note that when it sends
the message, it adds a header: x-my-other-format-is-an-
rss-feed, with the URL to the RSS version of the message.

 June 23 2005
 

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Notification Works: Thunderclap

The UDP notification packet sent by Thundermouse contains
a few important fields: the sender’s email address, the receiver’s
email address, a unique message-id, and the feed URL for the
one-to-one channel between them.

Maybe there’s a variant, where if the data payload is short
enough, the message itself gets bundled into the packet too,
and there’s a bit field in the UDP packet that says “this is a
heavyweight notification”. Oh, and there’s another bitfield, too:
whether the sender clicked “send fast” or “send slow”. That
tells us whether we’re in IM mode or email mode.

We call this protocol “Thunderclap”. (I thought about
calling it “squeak” instead. Maybe we’ll change the name to
that.)

Where does Thundermouse send the notification? It does
an SRV DNS lookup against the receiver’s email address. If
the receiver doesn’t have an SRV Thunderclap record, then
Thundermouse knows not to even try. But if the receiver does
support Thunderclap notifications, then that’s a signal to the
sender that the receiver is RSS/Email aware. SRV records
let the receiver specify servers which handle Thunderclap
notifications.

The Thunderclap protocol supports confirmations: a
receiver can ack the notification with a UDP packet of its
own. Confirmations are sent back to the IP address that
originated the notification. They contain a bitfield that says
“thanks, don’t bother sending it via SMTP”. Polite receivers
should send back a confirmation whether they decline SMTP
or not: sometimes the bit goes one way, sometimes the bit goes
the other way.

How long should Thundermouse wait for a confirmation?
We don’t want to wait too long, because we want to fall back
to SMTP quickly, and not hold up the works. But actually
the SRV record gives us a clue: if there’s no SRV record, we
go straight to SMTP. If there is an SRV record, we wait 30
seconds; if no confirmation came back, we send another
UDP notification. We try maybe twenty times in total, for 0

 June 23 2005
 2

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

minutes, at 30 second intervals, on the theory that the typical
reboot time for a Unix server shouldn’t go much over that. If
we don’t get a confirmation after ten minutes, we just give up!
If an SRV record was found, and we do not get a confirmation
that declines SMTP, we do not attempt to send the message via
SMTP. I know. Shocker.

Why is it okay to let UDP fail? UDP is not reliable, and
servers go down; but we can face that with equanimity! In the
brave new world of RSS/Email, it’s ultimately the end-user’s
job to poll all their senders every so often. Yup, you heard that
right. More on that later.

 June 23 2005
 3

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Receiving Works: Thundercat

There are two parts to receiving: there’s the ISP hub, and there’s
the actual end-user leaf. In this section we focus on the hub:
the ISP, or the enterprise, or the Linux server that gets mail.

Traditionally, a mail hub has a cluster of MTAs bristling
with all kinds of defenses, from DNSBLs to TCP throttling
to challenge-response. In fact, a lot of receivers nowadays
implement a defense-in-depth philosophy, with edge MTAs
on the outside, unix MTAs in the middle, and antispam
like Brightmail and antivirus like McAfee on the inside,
like wagons circled around a pink and vulnerable Microsoft
Exchange server. And maybe all those defenses are still there:
in the RSS/Email world, for backward compatibility we might
want to still accept messages over port 25. But the RSS/Email
MTA-on-steroids also listens for UDP notifications. We call it
Thundercat.

If Thundercat gets a UDP notification from a sender, it
knows: “one of my users (maybe) has got new mail!” And so
it records that assertion into a database. The database looks
pretty darn simple: four fields, timestamp + sender + receiver
+ feed_url are enough to go on. And that database is exposed
to receiver end-users in the form of … you guessed it, an RSS
feed!

That works fine if the end-users are all RSS/Email aware.
If Thundercat knows somehow that the end-users are doing
the RSS/EMail thing, then it can send an SMTP-decline
confirmation UDP packet back to the sender, so the sender
doesn’t try to follow up with a copy via SMTP.

Just how does Thundercat know which users are RSS/Email
aware? That’s an open problem: maybe it observes that some
users are pulling down the dirty-list feed, and assumes that
those users don’t need an SMTP version of the message. Or
maybe there’s some kind of explicit configuration. But this
doesn’t seem too hard.

If the recipient of the message is not RSS/Email aware,
though, then Thundercat doesn’t send an SMTP-decline
confirmation packet for that recipient. It sends a confirmation

 June 23 2005
 4

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

packet all right, but the SMTP-decline bit is not set. So in
effect it’s saying “please do send that message over SMTP.”
And if the receiver site has an SMTP listener running, we just
fall back to Legacy mode, and the message shows up over
SMTP.

But hey! Maybe Thundercat’s gotten so tired of all
that SMTP nonsense that it takes matters into its own
hands. Maybe the receiver thinks SMTP is fine for message
submission, but not for over-the-net transmission anymore. If
a receiving site has made the leap of faith to RSS/Email and is
simply declining all incoming SMTP, it can still offer backward
compatibility with its end-users, to a degree. What does it do?
It sends back a confirmation packet with SMTP-decline set to
“yes”. And then it reaches out to the sender and it pulls down
the message itself, and sends it straight into the local message
store. The legacy end-user pulling mail down over POP or
IMAP never knows the difference.

From lunch with Jarrod Roberson, Meng realized that it’s
possible to offfer an RSS feed to the receiver client, even if
there’s no RSS happening anywhere else in the system; it just
has to upgrade Legacy Email messages into RSS format. This
lets people pull an RSS feed of new mail, which is something
they want to do already. Symmetrically, a POP proxy can read
RSS on one end and serve POP on the other – and this proxy
can even live on the end-user’s box!

 June 23 2005
 5

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Reading Works: Thunderbird

In the legacy model, an MUA polls the ISP’s server repeatedly.
POP is what people know, and it’s still what most people
use. IMAP makes the constant polling a little less work, but
the model is basically the same. Messages accumulate in the
receiver ISP’s mailstore, and are periodically downloaded by
the receiver MUA.

In the RSS/Email world, the receiver’s client asks their ISP
not for a complete dump of all the new mail, but for a list of
pointers to new mail. “Who sent me mail?” asks Thunderbird,
and Thundercat replies with a list of senders and feed urls.
Then Thunderbird goes off and polls each one of those senders
directly. This model tremendously lessens the burden on
the receiver ISP. No more POP, no more IMAP, no more
accumulating new messages, no more spam, really. What a
relief. I can’t wait to get there.

But what if the UDP notification failed? And what if the
sender has drunk so much RSS/Email Kool-Aid that they’re
not even falling back to SMTP any more? Then it’s up to
receivers to poll everyone in their addressbook. That’s right:
everyone who sends you mail, you ping them once a day to see
if they have anything new for you. Is that model inefficient?
Yes! Does the blogosphere care? No! Should we?

James Baldwin strongly disagrees with the design principle
that notification should be allowed to be unreliable; he
believes that the global polling is inefficient and should not
be required ever. This places a higher burden of reliability on
the notification protocol, and requires that a continuously-
connected ISP always be in the picture.

 June 23 2005
 6

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

What About Spam?

Spammers will adapt. They will queue messages in their
outbound RSS feed boxes. They will send UDP notifications.
Thundercat will accept those notifications. It may even
respond with confirmations. And Thundercat will dutifully
relay to you all the spam feeds mixed in with the regular mail
feeds.

That’s where the default-accept versus default-reject paradigm
reversal kicks in. You need to make a basic decision: do
you want to accept input from people who aren’t in your
addressbook? If you do not, you will not get spam, but you
may have a harder time getting mail from strangers. If you do,
you will get mail from strangers, but you will also get spam.

The difference is, if you make the decision not to get mail from
strangers, Thunderbird will filter out all that spam without
even bothering to download it. The total cost to the receiver
is now one UDP packet of bandwidth, one row in a database,
and one XML stanza to the end-user client.

 June 23 2005
 7

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Archiving Works

Foo.

 June 23 2005
 8

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How First Contact Works

If you imagine a system which is default-reject, assume-
guility-until-proven-innocent, whitelisting-only, where the
addressbook is essential, and anybody who’s not on your
buddy list simply doesn’t get through, the first contact problem
becomes paramount.

Partly it’s a question of expectations. In IM, many people
expect that if you’re not on the buddy list, you don’t get
through. In Email, people expect total strangers to write in.

The whitelisting-only, addressbook model is a wrenching
transition for email. The end-user market looks like it really
wants to move in that direction, but several obstacles stand
in the way: it’s hard for an ISP MTA to know what the end-
user’s MUA addressbook looks like, so it’s hard to do a reject at
SMTP time. But this where things are headed.

In an RSS model, your addressbook and your list of subscribed
feeds are one, and so the whitelisting-only model is implicit.

In both cases the first contact problem arises.

There are several approaches to solving the problem. I believe
that if we jam them together, they shore each other up and
solve enough of the first contact problem to permit progress.

Note, first, that the first contact problem only applies to people
you haven’t already got in your addressbook. Everyone you
already know is safe. Second, you can use domain reputation:
if AOL users generally don’t spam, anyone sending mail from
AOL will get through. Third, you can use FOAF and Social
Networking type solutions to investigate degrees of separation.
Fourth, you can do challenge/response, as long as you don’t
think it’s evil. Put together these things solve first contact well
enough.

 June 23 2005
 9

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Essential Differences

At heart this is all about making it possible for receivers to
only get mail from people they know. RSS/Email makes
this possible at much lower cost than Legacy Email. There
are two factors. One, it’s hard for end-users to upload their
addressbooks to their ISPs, so an ISP MTA doesn’t easily
know who’s on the whitelist and who’s not, so it has to accept
the message and pass it on to the client to delete. Two, this is
horribly inefficient, because by the time the stranger-or-not,
spam-or-not decision is made, all the costs have been borne
by all parties involved. RSS/Email reduces the burden to
the absolute minimum, and makes it less important that ISP
MTAs know who’s in the end-user’s addressbook.

Things could still go the other way. ISPs could attempt to
gather up their end-users’ addressbooks and keep track of
them centrally. Improved synchronization tools make this a
feasible future.

Even if you want to get mail from people you don’t know,
the RSS/Email model makes it much cheaper (for the receiver
ISPs) to relay spam (and the odd first-contact message) to
end-users; that UDP packet is much less work than an entire
SMTP transaction.

 June 23 2005
 20

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

What does the Zombie Scenario look like?

Abuse complaints come back from receiver end-users to the
receiver ISP; the receiver ISP feeds that either to the sender
ISP directly using a standardized abuse reporting format, or
indirectly via a reputation system which senders check. The
sender ISP can look inside the sender’s outbox and confirm
that it’s all spam; and then it can nuke that outbox. The
nuking can be automated based on thresholds. Once enough
end-user receivers complain, and reputation systems take note
of those complaints, receiver ISPs can automatically ignore
that first-contact sender without bearing the cost of actually
downloading and storing the mail.

Receiver ISPs can take advantage of the fact that they
maintain a new-mail index feed to just run through with a DB
operation and remove complained-about first-contact senders
from their end-users’ index feeds.

 June 23 2005
 2

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: ISPs

Foo.

 June 23 2005
 22

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Enterprises

Foo.

 June 23 2005
 23

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Traditional End-Users

Foo.

 June 23 2005
 24

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Mobile Users

Foo.

 June 23 2005
 25

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Discussion Mailing List Providers

Foo.

 June 23 2005
 26

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Announcement Mailing List Providers

Foo.

 June 23 2005
 27

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Marketing Service Providers

Foo.

 June 23 2005
 28

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Implications: Blogs

Foo.

 June 23 2005
 29

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Efficiency Considerations

Pull systems are inefficient, because you have to poll everyone
all the time on the off chance something’s changed. The
notification protocol helps mitigate this burden, but it’s not
perfect: receivers will still want to poll senders on a regular
basis, like maybe once a day, and because most of the time
those polls will come back negative, you can argue that that’s
wasted bandwidth. And that argument is correct: a push-
based system makes more sense in an ideal world. But in the
real world spammers take advantage of the push model and
the receivers end up paying the price. If you look at the total
cost of a push world with spam, and a pull world without
spam, the pull model wins.

So on a macroeconomic level it’s cheaper to do a pull model
than a push model. But on a microeconomic level, senders
aren’t going to want to switch: right now they have it easy, and
they’re not going to want to bear new burdens. We need more
thinking here.

 June 23 2005
 30

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Messaging Theory

Foo.

 June 23 2005
 3

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Push and Pull Models

Foo.

 June 23 2005
 32

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Time Sensitivity

 June 23 2005
 33

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Audience Sizes

We can categorize messages by number of recipients.

Self. A message is only readable by the author; it’s not really to
anyone, it’s just there.

One target. A message is directed to a single recipient.

Multiple targets. A message goes to more than one recipient.
We want to be able to support traditional cc and bcc
semantics.

Public. A message could be put out there for all to read,
without restriction.

Nonself. As a special case, a person might want to send a
message that they want everybody-except-so-and-so to read.

We can also categorize messages in other ways.

By topic. This leads to tagging, which is all the rage.

 June 23 2005
 34

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Privacy Levels

We originally called this “security levels”, but “privacy” may be
more accurate. Ideally, a sender should be able to set a privacy
level on every message.

None. Messages are totally public.

Privacy Through Obscurity. If you don’t tell anyone about your
blog, nobody will read it. Maybe.

Soft privacy. If a receiver gives out the feed URL, anyone they
give it to will be able to read all the mail from a given sender
to that receiver. This corresponds to the capability key model.
If the feed URL contains a long random string, it’s basically a
capability key, and more or less unguessable; but if I wanted to
give away that mailbox, I just give away the URL.

Hard privacy. A feed could be protected using http
authentication, at a number of levels: basic auth just requires a
username/password pair, while a full-on security model might
require a client-side certificate and two-factor authentication
with an RSAID and biometrics.

 June 23 2005
 35

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Threat Models

Zombies.

Spoofing.

Man in the middle attacks.

Interception.

Nigerian cybercafe attack. The best way to defeat a Turing test
is to hire a human.

Gullible humans need walled gardens.

Mailbombing.

Listbombing.

 June 23 2005
 36

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Evolved Mechanisms

The email industry has evolved a number of mechanisms.
Some of them are universal to all messaging; some of them are
unique to email. Let’s look at how those mechanisms transfer
to RSS/Email.

Challenge Response.

Spam Filtering (by Content).

Spam Filtering (by Sender).

Virus Filtering.

New Mail Notification.

Pulling Messages. Remember Pointcast?

Port 25 Blocking.

Port 587 Submission. This becomes https submission.

Cryptography. Transport crypto can be trivially handled by
https. True end-to-end crypto can be embedded using S/
MIME type techniques.

Sender Authentication. This was absent from Legacy Email
and so we had to spend years of our lives and much effort
hacking it in. With a pull architecture, it’s built in. URLs
authenticate themselves and are, IDN and ebay.com@badguy.
com attacks notwithstanding, not generally spoofable. If
you want certificate-based authentication you have good old
https.

 June 23 2005
 37

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Miscellaneous Considerations

Threading.

Return Receipts.

Directed Presence. One-to-one “you’ve got mail” maps neatly
to directed presence.

Repudiation. (And nonrepudiation.)

Retraction.

Search based virtual folders?

Support for bookmarking.

Dynamic Content. This is going to be interesting, because
some receiver ISPs will want to pull the content down and
serve it to the receiver end-user in traditional ways. So the
content stops being dynamic when the receiver ISP grabs it,
at time of sending, when it’s actually meant to be dynamic up
until the time the receiver client grabs it, at time of eyeballing.
You can get around this with iframes or AJAX, of course.

Urgency and Prioritization. (Thanks to Fred Fuller). There is
way too much distraction and interruption in the workplace.
If people task-switch less, they can get more done. Imagine if,
in addition to “Send Fast” and “Send Slow”, there’s a “I need
an answer: immediately / by end of work day / in 20 minutes
/ by X date”. That would help the receiver’s MUA integrate
messaging into a to-do system, and decide whether to pop up
an intrusive dialogue box or not.

 June 23 2005
 38

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Practices: Today and Tomorrow

Foo.

 June 23 2005
 39

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

How Entrenched is the Legacy Model?

Maybe this is all Qwerty vs Dvorak, and even though a pull
model is better, the push model, with all its flaws, is here to
stay. We need to engineer a full-blown disruption with a killer
app and smooth upgrade path and everything. I think we can
make the jump if we ever get to a point where we say to end-
users “if you want to accept mail from strangers, that’ll be an
extra 5 a month”. Will anyone dare say that?

Retooling an entire email infrastructure is a lot of work.
What are the benefits? Already today we can get no spam
if we make a number of tradeoffs: we tell our ISPs who’s
in our addressbook; we only accept mail from senders
who are whitelisted in that addressbook; we apply SMTP
authentication; and we reject or challenge-response mail
from everybody else. RSS/Email lets us do essentially the
same things, only cheaper; but does the savings really justify a
wholesale conversion?

Maybe the best way to find out is build the service and see
what people do with it.

We can probably expect the marketing industry (ESPC) to
respond quickly.

 June 23 2005
 40

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Managing User Expectations

How much are end-users going to have to think about this
paradigm shift?

The blogging revolution has done a lot of the work already:
it has paved the way for a pull model. The IM revolution has
trained people to understand whitelisting based on buddy lists
and addressbooks.

 June 23 2005
 4

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Transition Strategy: How Do We Get From Here to There?

Do we set a sunrise date?

Do we establish gateways to legacy mail, in the same way we
had gateways from bitnet to the Internet? These gateways
might leave a role for systems like Goodmail.com. The
Transcended Sphere says: “send mail using RSS, or pay the
cost of filtering it.” It could say this to the senders, or it could
say this to the end-user receivers.

We can use an x-my-other-format-is-an-rss-feed header
to get Thunderbird to automatically subscribe to feeds, and
ratchet senders and receivers towards the new model.

 June 23 2005
 42

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Backward and Forward Compatibility

Foo.

 June 23 2005
 43

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Major Components

Foo.

 June 23 2005
 44

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Thunderbird Integrated MUA

Foo.

 June 23 2005
 45

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Thundercat Receiver and MDA

Jarrod Roberson suggested a POP/IMAP proxy to help with
receiver-side upgrade path.

 June 23 2005
 46

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Thundermouse Publisher and MSA

Foo.

 June 23 2005
 47

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Thunderclap Notification Protocol

This notification protocol is more or less directed presence.
Today, presence protocols are crude: you’re available, or idle,
or away, to everyone. That corresponds to RSS feeds today
being the same one-to-many communication to everyone. If
we can layer one-to-one messaging on top of RSS, we can do
one-to-one presence: we can tell one person “I’m available, and
by the way I just sent you mail” and we can tell another person
“sorry Mom, I’m away, but I did read your last message.”

 June 23 2005
 48

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Integration Challenges

Foo.

 June 23 2005
 49

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

FAQs

What if a UDP notification gets lost? Too bad. It’s the client’s
job to poll everything in the addressbook.

Isn’t it inefficient to poll everyone? Yes. It’s much more elegant
to use a push model, because in a push model, the system is
quiet except when someone has just said something. In a pull
model, receivers are constantly going “did you say something
to me?” and senders are constantly saying “no, I didn’t.” When
people are half deaf, they shout more.

Aren’t you glossing over the fact that we can do whitelisting-only
using the existing email paradigm? Indeed, that is what sender
authentication is all about: it lets us whitelist senders reliably.

Can senders handle the load?

If a receiver ISP wants to support webmail, won’t they have to
store all the mail anyway? Argh, you’re right. Is there a way
around this? Can they construct a mailbox on the fly based on
recorded notifications?

 June 23 2005
 50

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Security Model

Initial first-contact notification maybe goes over http from
the sender ISP to the receiver ISP. That notification contains a
sender-index feed URL which is secured using a capability key
model with a really long random string. That sender-index
feed URL can be grabbed over https by the receiver client.
Each sender-index feed contains permalinks to individual
messages, which themselves have their own really long
random URLs.
we need to backload RSS capability into an
addressbook.
Meng Wong: in other words, given an email
address, we need a way to intuit the RSS feed URL
for that email address
Meng Wong: we need to invent a DNS SRV
methodology and a URL convention, i think
Andrei Freeman: sort of a rssm://pobox.com/
mengweng
Meng Wong: we want to support the long random
string capability key approach, and we want to
support a more predictable url scheme.
Meng Wong: right
Meng Wong: so, given an email address
andrei@freeman.com, we do an SRV lookup on
freeman.com for its RSS/Email service, and then we
connect to any one of those machines, and request
rssm://freeman.com/re1/index?sender=andrei@free
man.com&rcpt=mengwong@pobox.com
Andrei Freeman: right
Meng Wong: now, we’ll probably get an http basic
auth challenge back.
Meng Wong: i wonder if we can cheat and say if
the request is coming from an authorized requestor
machine for pobox.com, skip auth
Meng Wong: that bypasses the password thing
completely.
Meng Wong: okay, so, we need to spec this, and
we need to write a prototype implementation.

 June 23 2005
 5

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Forwarding

If you give a permalink to somebody else, they can read
that message, and that message only. The sender-index feed
remains unknown, unless a receiver should be so foolish as to
give it away. This is the elegant model, but we can’t count on
it; so we can just layer forwarding as a new message.

 June 23 2005
 52

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Acknowledgements

Much of this work was fleshed out during a discussion with
Andrei Freeman on 20050404.

Andy Newton first brought the idea of RSS/Email to my
attention at maawg in early 2005.

The original concept of sender-stores messaging was first
publicized by DJB as im2000. Pioneering message systems
such as Zephyr established many of these concepts. http://ref.
web.cern.ch/ref/CERN/CNL/2003/00/zephyr/

I am grateful for the feedback and discussion with David
Mayne, Erik Fair, Robert Barclay, James Baldwin, and Juan
Altmayer Pizzorno. Fred Fuller contributed several ideas
regarding prioritization and urgency.

 June 23 2005
 53

RSS/Email · Pobox.com White Paper – Industry Distribution
Comments to mengwong@pobox.com

RSS/Email · v0.06

Appendix A: Thunderbird Patch Specification

Design a protocol that satisfies the following scenario:

Given a sender’s email address, identify the server or servers
which offer an RSS feed for that sender. A sender may offer
multiple feeds: a public index feed may link to multiple
one-to-many public blogs, one per topic; and there may be
multiple private feeds, which are one-to-one. For example,
given the address andrei@freeman.com, an SRV DNS query
may identify one or more servers. You are at liberty to design
a convention for public and private feed autodiscovery: an
SRV DNS result may, for example, eventually lead to a query
of the form http://rss0.freeman.com/re/pub/index?usernam
e=andrei@freeman.com for the public feeds, and http://rss02.
freeman.com/re/pri/index?username=andrei@freeman.
com&rcpt=mengwong@pobox.com for a one-to-one private
feed. Backward compatibility with existing RSS conventions is
preferred.

The sender and recipient may not have established a prior
shared secret password; in that case, the sender may only be
able to authenticate recipients according to IP address and,
possibly, a client-side SSL certificate. For example, rss02.
freeman.com may establish that the client IP for the http
query is a target of a (slightly differently-typed) SRV DNS
query against pobox.com, and allow the pull; this security
model is essentially equivalent to modern-day SMTP.
Alternatively, for a higher level of security, rss02.freeman.com
may require that the querying server offer a client certificate
for pobox.com.

You must support alternative authentication models: if the
recipient client pulls a unique per-message URL, or a per-edge
(between sender and recipient) “channel” URL, without the
benefit of SRV IP-based authentication or client-certificate
crypto-based authentication, the server must also offer the
message.

	Message Lifecycle in Brief
	Benefits
	Disadvantages
	Message Lifecycle in Detail
	How Composition Works
	How Submission Works
	How Transmission Works: Thundermouse
	How Notification Works: Thunderclap
	How Receiving Works: Thundercat
	How Reading Works: Thunderbird
	What About Spam?
	How Archiving Works
	How First Contact Works
	Essential Differences
	What does the Zombie Scenario look like?
	Implications: ISPs
	Implications: Enterprises
	Implications: Traditional End-Users
	Implications: Mobile Users
	Implications: Discussion Mailing List Providers
	Implications: Announcement Mailing List Providers
	Implications: Marketing Service Providers
	Implications: Blogs
	Efficiency Considerations
	Messaging Theory
	Push and Pull Models
	Time Sensitivity
	Audience Sizes
	Privacy Levels
	Threat Models
	Evolved Mechanisms
	Miscellaneous Considerations
	Practices: Today and Tomorrow
	How Entrenched is the Legacy Model?
	Managing User Expectations
	Transition Strategy: How Do We Get From Here to There?
	Backward and Forward Compatibility
	Major Components
	Thunderbird Integrated MUA
	Thundercat Receiver and MDA
	Thundermouse Publisher and MSA
	Thunderclap Notification Protocol
	Integration Challenges
	FAQs
	Security Model
	Forwarding
	Acknowledgements

